Contour-Based Corner Detection and Classification by Using Mean Projection Transform

نویسندگان

  • Seyed Mostafa Mousavi Kahaki
  • Md. Jan Nordin
  • Amir Hossein Ashtari
چکیده

Image corner detection is a fundamental task in computer vision. Many applications require reliable detectors to accurately detect corner points, commonly achieved by using image contour information. The curvature definition is sensitive to local variation and edge aliasing, and available smoothing methods are not sufficient to address these problems properly. Hence, we propose Mean Projection Transform (MPT) as a corner classifier and parabolic fit approximation to form a robust detector. The first step is to extract corner candidates using MPT based on the integral properties of the local contours in both the horizontal and vertical directions. Then, an approximation of the parabolic fit is calculated to localize the candidate corner points. The proposed method presents fewer false-positive (FP) and false-negative (FN) points compared with recent standard corner detection techniques, especially in comparison with curvature scale space (CSS) methods. Moreover, a new evaluation metric, called accuracy of repeatability (AR), is introduced. AR combines repeatability and the localization error (Le) for finding the probability of correct detection in the target image. The output results exhibit better repeatability, localization, and AR for the detected points compared with the criteria in original and transformed images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corner Detection of Contour Images Using Continuous Wavelet Transform

This paper presents a multiscale corner detection method based on continuous wavelet transform (CWT) of contour images. The corner points are detected from the local wavelet transform modulus maxima (WTMM) of the contour orientation. To reduce the side effects of the discretization and smoothing that are introduced by the preprocessing steps, we adopt a simple but efficient post processing algo...

متن کامل

Object Class Detection and Classification using Multi Scale Gradient and Corner Point based Shape Descriptors

This paper presents a novel multi scale gradient and a corner point based shape descriptors. The novel multi scale gradient based shape descriptor is combined with generic Fourier descriptors to extract contour and region based shape information. Shape information based object class detection and classification technique with a random forest classifier has been optimized. Proposed integrated de...

متن کامل

Multiscale contour corner detection based on local natural scale and wavelet transform

A new corner detection method for contour images is proposed based on dyadic wavelet transform (WT) at local natural scales. The points corresponding to wavelet transform modulus maxima (WTMM) at different scales are taken as corner candidates. For each candidate, the scale at which the maximum value of the normalized WTMM exists is defined as its ‘‘local natural scale’’, and the corresponding ...

متن کامل

Auto-Corner Detection Based on the Eigenvalues Product of Covariance Matrices over Multi-Regions of Support

In this paper we present an auto-detection corner based on eigenvalues product of covariance matrices (ADEPCM) of boundary points over multi-region of support. The algorithm starts with extracting the contour of an object, and then computes the eigenvalues product of covariance matrices of this contour at various regions of support. Finally determine automatically peaks of the graph of eigenval...

متن کامل

Contours Extraction Using Line Detection and Zernike Moment

Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014